On locally repeated values of certain arithmetic functions. III

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Locally Repeated Values of Certain Arithmetic Functions, IV

Let ω(n) denote the number of prime divisors of n and letÄ(n) denote the number of prime power divisors of n. We obtain upper bounds for the lengths of the longest intervals below x whereω(n), respectivelyÄ(n), remains constant. Similarly we consider the corresponding problems where the numbers ω(n), respectivelyÄ(n), are required to be all different on an interval. We show that the number of s...

متن کامل

On Locally Repeated Values of Certain Arithmetic Functions . Ii

which is nearly 1 if K is large . Thus if n and n+1 both satisfy (1 .3) and if we view v(n) and v(n+l) as "independent events", then the "probability" that (L2) holds should be at least (2K Vlog log n)-1 . Summing these probabilities would then give order of magnitude x1f log log x solutions n of (1 .2) with n-x, thus supporting the conjecture. A refinement of this heuristic argument even sugge...

متن کامل

RIMS - 1685 On certain arithmetic functions

On certain arithmetic functions˜M (s; z 1 , z 2) associated with global fields: Analytic properties. On certain arithmetic functions˜M (s; z 1 , z 2) associated with global fields: Analytic properties.

متن کامل

On certain arithmetic functions involving exponential divisors

The integer d is called an exponential divisor of n = ∏r i=1 p ai i > 1 if d = ∏r i=1 p ci i , where ci|ai for every 1 ≤ i ≤ r. The integers n = ∏r i=1 p ai i ,m = ∏r i=1 p bi i > 1 having the same prime factors are called exponentially coprime if (ai, bi) = 1 for every 1 ≤ i ≤ r. In this paper we investigate asymptotic properties of certain arithmetic functions involving exponential divisors a...

متن کامل

Common Values of the Arithmetic Functions

We show that the equation φ(a) = σ(b) has infinitely many solutions, where φ is Euler’s totient function and σ is the sum-of-divisors function. This proves a 50-year old conjecture of Erdős. Moreover, we show that there are infinitely many integers n such that φ(a) = n and σ(b) = n each have more than n solutions, for some c > 0. The proofs rely on the recent work of the first two authors and K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1987

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1987-0897061-6